The integration of IoT devices in healthcare introduces significant security and reliability challenges, increasing susceptibility to cyber threats and operational anomalies. This study proposes a machine learning-driven framework for (1) detecting malicious cyberattacks and (2) identifying faulty device anomalies, leveraging a dataset of 200,000 records. Eight machine learning models are evaluated across three learning approaches: supervised learning (XGBoost, K-Nearest Neighbors (K- NN)), semi-supervised learning (Generative Adversarial Networks (GAN), Variational Autoencoders (VAE)), and unsupervised learning (One-Class Support Vector Machine (SVM), Isolation Forest, Graph Neural Networks (GNN), and Long Short-Term Memory (LSTM) Autoencoders). The comprehensive evaluation was conducted across multiple metrics like F1-score, precision, recall, accuracy, ROC-AUC, computational efficiency. XGBoost achieved 99\% accuracy with minimal computational overhead (0.04s) for anomaly detection, while Isolation Forest balanced precision and recall effectively. LSTM Autoencoders underperformed with lower accuracy and higher latency. For attack detection, KNN achieved near-perfect precision, recall, and F1-score with the lowest computational cost (0.05s), followed by VAE at 97% accuracy. GAN showed the highest computational cost with lowest accuracy and ROC-AUC. These findings enhance IoT-enabled healthcare security through effective anomaly detection strategies. By improving early detection of cyber threats and device failures, this framework has the potential to prevent data breaches, minimize system downtime, and ensure the continuous and safe operation of medical devices, ultimately safeguarding patient health and trust in IoT-driven healthcare solutions.
Anomaly detection is a critical task in cybersecurity, where identifying insider threats, access violations, and coordinated attacks is essential for ensuring system resilience. Graph-based approaches have become increasingly important for modeling entity interactions, yet most rely on homogeneous and static structures, which limits their ability to capture the heterogeneity and temporal evolution of real-world environments. Heterogeneous Graph Neural Networks (HGNNs) have emerged as a promising paradigm for anomaly detection by incorporating type-aware transformations and relation-sensitive aggregation, enabling more expressive modeling of complex cyber data. However, current research on HGNN-based anomaly detection remains fragmented, with diverse modeling strategies, limited comparative evaluation, and an absence of standardized benchmarks. To address this gap, we provide a comprehensive survey of HGNN-based anomaly detection methods in cybersecurity. We introduce a taxonomy that classifies approaches by anomaly type and graph dynamics, analyze representative models, and map them to key cybersecurity applications. We also review commonly used benchmark datasets and evaluation metrics, highlighting their strengths and limitations. Finally, we identify key open challenges related to modeling, data, and deployment, and outline promising directions for future research. This survey aims to establish a structured foundation for advancing HGNN-based anomaly detection toward scalable, interpretable, and practically deployable solutions.
Anomaly detection in complex, high-dimensional data, such as UAV sensor readings, is essential for operational safety but challenging for existing methods due to their limited sensitivity, scalability, and inability to capture intricate dependencies. We propose the Diffuse to Detect (DTD) framework, a novel approach that innovatively adapts diffusion models for anomaly detection, diverging from their conventional use in generative tasks with high inference time. By comparison, DTD employs a single-step diffusion process to predict noise patterns, enabling rapid and precise identification of anomalies without reconstruction errors. This approach is grounded in robust theoretical foundations that link noise prediction to the data distribution's score function, ensuring reliable deviation detection. By integrating Graph Neural Networks to model sensor relationships as dynamic graphs, DTD effectively captures spatial (inter-sensor) and temporal anomalies. Its two-branch architecture, with parametric neural network-based energy scoring for scalability and nonparametric statistical methods for interpretability, provides flexible trade-offs between computational efficiency and transparency. Extensive evaluations on UAV sensor data, multivariate time series, and images demonstrate DTD's superior performance over existing methods, underscoring its generality across diverse data modalities. This versatility, combined with its adaptability, positions DTD as a transformative solution for safety-critical applications, including industrial monitoring and beyond.
Semiconductor manufacturing is an extremely complex and precision-driven process, characterized by thousands of interdependent parameters collected across diverse tools and process steps. Multi-variate time-series analysis has emerged as a critical field for real-time monitoring and fault detection in such environments. However, anomaly prediction in semiconductor fabrication presents several critical challenges, including high dimensionality of sensor data and severe class imbalance due to the rarity of true faults. Furthermore, the complex interdependencies between variables complicate both anomaly prediction and root-cause-analysis. This paper proposes two novel approaches to advance the field from anomaly detection to anomaly prediction, an essential step toward enabling real-time process correction and proactive fault prevention. The proposed anomaly prediction framework contains two main stages: (a) training a forecasting model on a dataset assumed to contain no anomalies, and (b) performing forecast on unseen time series data. The forecast is compared with the forecast of the trained signal. Deviations beyond a predefined threshold are flagged as anomalies. The two approaches differ in the forecasting model employed. The first assumes independence between variables by utilizing the N-BEATS model for univariate time series forecasting. The second lifts this assumption by utilizing a Graph Neural Network (GNN) to capture inter-variable relationships. Both models demonstrate strong forecasting performance up to a horizon of 20 time points and maintain stable anomaly prediction up to 50 time points. The GNN consistently outperforms the N-BEATS model while requiring significantly fewer trainable parameters and lower computational cost. These results position the GNN as promising solution for online anomaly forecasting to be deployed in manufacturing environments.
Graph-level anomaly detection aims to identify anomalous graphs or subgraphs within graph datasets, playing a vital role in various fields such as fraud detection, review classification, and biochemistry. While Graph Neural Networks (GNNs) have made significant progress in this domain, existing methods rely heavily on large amounts of labeled data, which is often unavailable in real-world scenarios. Additionally, few-shot anomaly detection methods based on GNNs are prone to noise interference, resulting in poor embedding quality and reduced model robustness. To address these challenges, we propose a novel meta-learning-based graph-level anomaly detection framework (MA-GAD), incorporating a graph compression module that reduces the graph size, mitigating noise interference while retaining essential node information. We also leverage meta-learning to extract meta-anomaly information from similar networks, enabling the learning of an initialization model that can rapidly adapt to new tasks with limited samples. This improves the anomaly detection performance on target graphs, and a bias network is used to enhance the distinction between anomalous and normal nodes. Our experimental results, based on four real-world biochemical datasets, demonstrate that MA-GAD outperforms existing state-of-the-art methods in graph-level anomaly detection under few-shot conditions. Experiments on both graph anomaly and subgraph anomaly detection tasks validate the framework's effectiveness on real-world datasets.
Graph anomaly detection (GAD) has attracted growing interest for its crucial ability to uncover irregular patterns in broad applications. Semi-supervised GAD, which assumes a subset of annotated normal nodes available during training, is among the most widely explored application settings. However, the normality learned by existing semi-supervised GAD methods is limited to the labeled normal nodes, often inclining to overfitting the given patterns. These can lead to high detection errors, such as high false positives. To overcome this limitation, we propose GraphNC , a graph normality calibration framework that leverages both labeled and unlabeled data to calibrate the normality from a teacher model (a pre-trained semi-supervised GAD model) jointly in anomaly score and node representation spaces. GraphNC includes two main components, anomaly score distribution alignment (ScoreDA) and perturbation-based normality regularization (NormReg). ScoreDA optimizes the anomaly scores of our model by aligning them with the score distribution yielded by the teacher model. Due to accurate scores in most of the normal nodes and part of the anomaly nodes in the teacher model, the score alignment effectively pulls the anomaly scores of the normal and abnormal classes toward the two ends, resulting in more separable anomaly scores. Nevertheless, there are inaccurate scores from the teacher model. To mitigate the misleading by these scores, NormReg is designed to regularize the graph normality in the representation space, making the representations of normal nodes more compact by minimizing a perturbation-guided consistency loss solely on the labeled nodes.




Consumer electronics (CE) connected to the Internet of Things are susceptible to various attacks, including DDoS and web-based threats, which can compromise their functionality and facilitate remote hijacking. These vulnerabilities allow attackers to exploit CE for broader system attacks while enabling the propagation of malicious code across the CE network, resulting in device failures. Existing deep learning-based traffic anomaly detection systems exhibit high accuracy in traditional network environments but are often overly complex and reliant on static infrastructure, necessitating manual configuration and management. To address these limitations, we propose a scalable network model that integrates Software-defined Networking (SDN) and Compute First Networking (CFN) for next-generation CE networks. In this network model, we propose a Graph Neural Networks-based Network Anomaly Detection framework (GNN-NAD) that integrates SDN-based CE networks and enables the CFN architecture. GNN-NAD uniquely fuses a static, vulnerability-aware attack graph with dynamic traffic features, providing a holistic view of network security. The core of the framework is a GNN model (GSAGE) for graph representation learning, followed by a Random Forest (RF) classifier. This design (GSAGE+RF) demonstrates superior performance compared to existing feature selection methods. Experimental evaluations on CE environment reveal that GNN-NAD achieves superior metrics in accuracy, recall, precision, and F1 score, even with small sample sizes, exceeding the performance of current network anomaly detection methods. This work advances the security and efficiency of next-generation intelligent CE networks.
Anomaly detection in spatiotemporal data is a challenging problem encountered in a variety of applications, including video surveillance, medical imaging data, and urban traffic monitoring. Existing anomaly detection methods focus mainly on point anomalies and cannot deal with temporal and spatial dependencies that arise in spatio-temporal data. Tensor-based anomaly detection methods have been proposed to address this problem. Although existing methods can capture dependencies across different modes, they are primarily supervised and do not account for the specific structure of anomalies. Moreover, these methods focus mainly on extracting anomalous features without providing any statistical confidence. In this paper, we introduce an unsupervised tensor-based anomaly detection method that simultaneously considers the sparse and spatiotemporally smooth nature of anomalies. The anomaly detection problem is formulated as a regularized robust low-rank + sparse tensor decomposition where the total variation of the tensor with respect to the underlying spatial and temporal graphs quantifies the spatiotemporal smoothness of the anomalies. Once the anomalous features are extracted, we introduce a statistical anomaly scoring framework that accounts for local spatio-temporal dependencies. The proposed framework is evaluated on both synthetic and real data.




Financial fraud detection is essential to safeguard billions of dollars, yet the intertwined entities and fast-changing transaction behaviors in modern financial systems routinely defeat conventional machine learning models. Recent graph-based detectors make headway by representing transactions as networks, but they still overlook two fraud hallmarks rooted in time: (1) temporal motifs--recurring, telltale subgraphs that reveal suspicious money flows as they unfold--and (2) account-specific intervals of anomalous activity, when fraud surfaces only in short bursts unique to each entity. To exploit both signals, we introduce ATM-GAD, an adaptive graph neural network that leverages temporal motifs for financial anomaly detection. A Temporal Motif Extractor condenses each account's transaction history into the most informative motifs, preserving both topology and temporal patterns. These motifs are then analyzed by dual-attention blocks: IntraA reasons over interactions within a single motif, while InterA aggregates evidence across motifs to expose multi-step fraud schemes. In parallel, a differentiable Adaptive Time-Window Learner tailors the observation window for every node, allowing the model to focus precisely on the most revealing time slices. Experiments on four real-world datasets show that ATM-GAD consistently outperforms seven strong anomaly-detection baselines, uncovering fraud patterns missed by earlier methods.



In the real world, anomalous entities often add more legitimate connections while hiding direct links with other anomalous entities, leading to heterophilic structures in anomalous networks that most GNN-based techniques fail to address. Several works have been proposed to tackle this issue in the spatial domain. However, these methods overlook the complex relationships between node structure encoding, node features, and their contextual environment and rely on principled guidance, research on solving spectral domain heterophilic problems remains limited. This study analyzes the spectral distribution of nodes with different heterophilic degrees and discovers that the heterophily of anomalous nodes causes the spectral energy to shift from low to high frequencies. To address the above challenges, we propose a spectral neural network CES2-GAD based on causal edge separation for anomaly detection on heterophilic graphs. Firstly, CES2-GAD will separate the original graph into homophilic and heterophilic edges using causal interventions. Subsequently, various hybrid-spectrum filters are used to capture signals from the segmented graphs. Finally, representations from multiple signals are concatenated and input into a classifier to predict anomalies. Extensive experiments with real-world datasets have proven the effectiveness of the method we proposed.